UAV Archives - Agri-EPI Centre

Tag Archive for: UAV

Collaboration essential for successful agri-robotics

By: Eliot Dixon, Head of Engineering at Agri-EPI Centre

Robotics has several strong applications in agriculture, especially in scenarios where systems can enhance the productivity of a shrinking workforce or can offer production efficiencies to the farm. However, to be successful in these applications the systems created need be reliable, in terms of long-term physical robustness but also in the ability of their control software to handle the very wide variety of scenarios they will encounter in a farming environment. This means the robots must be both well designed and well tested to meet the needs of farmers. This includes a design which emphasises safety and reliability.

“Understanding user requirements and testing in-field is key”

Good design requires a deep understanding of the needs and requirements of farmers and their farming systems. This extends from the core values held by a farmer, such as safety, which dictate their decisions; through to very specific requirements created by the unique combination of their way of working and the land they work. If this understanding is not achieved for a farming system, then there is a very high chance that the eventual product will be unsuitable, either creating a failed product or a long development timeline to solve the deficiencies. Gaining this understanding should come through working with a wide variety of farms within the target market for the technology, not just a small handful. In many agricultural sectors this design stage is especially important due to the limited testing season and ability to iterate on the design.

Testing is also well understood to be important to creating a reliable product, and in agriculture this does require a close collaboration with farmers to ensure that the robot meets their needs. As these are complex machines, which are also often dangerous if not created with a strong safety process, the testing regime should also be rigorous enough to ensure that the system will function to the desired reliability for all the design requirements. A rigorous testing regime would usually require multiple tests for each requirement across multiple operational scenarios such as different weather conditions, soil types, dangers, failure modes, crops etc. Failure to complete this testing will certainly result in the robotic system encountering situations which it is unable to function within, which may create unfortunate repercussions for the user or manufacturer. Unfortunately, completing this massive number of tests requires a range of test facilities, some of which might be beyond the capability of a company focussing on a small range of agricultural applications.

In our 2021 hackathon we explore safety and security. Outcomes are discussed in our white paper here:

Hackathon white paper

As mentioned, good design and testing is essential to creating successful products, but this unfortunately comes with a high cost. Doing this for the wide range of complex operating scenarios in UK agriculture, as well as the short testing cycles, is driving up the cost of developing agricultural robots. There are a multitude of Agri-robotics companies in the UK creating their systems from almost the ground up, each of which are individually bearing the cost in time and money of this development. This creates barriers to adoption in terms of high costs, a limited set of operations which can be conducted by robots, or low reliability due to poor engineering, and is increasing the amount of time it takes for products to get to market. As in all development the saying “Good, Cheap, Fast. Pick two”, is very much in action here but some very pressing needs mean we must find ways to break that deadlock.

Collaboration enables future opportunities for robotic systems

The obvious solution for this deadlock is to massively increase collaboration between ag-robotics developers. This has been proposed for many years, but we are yet to see a viable solution to this. Direct collaboration is currently difficult for commercial reasons with developers competing for the same money, but also for technical reasons where it is challenging to share components between robots. Perhaps a solution for this is to build an ecosystem of adaptable, compatible, components and platforms which can be used to create a multitude of agricultural robotic systems. This ecosystem of components would also be able to be robustly tested to ensure reliability when integrated as part of a larger system. Thus, the costs of development would be increasingly shared, without any single robotics manufacturer losing income as they are all developing for specific agricultural niches. Using a set of well proven components would allow developers to focus on ensuring good understanding and design for specific problems in agriculture, while also allowing for easier integration and testing of the robots.

Robotics in agriculture is a promising field, and with the right design and testing, as well as collaboration between developers, it could be a great success. By understanding the needs and requirements of farmers and using that to create an ecosystem of components and platforms, robots can be developed which are high value, robust, reliable and safe. With the right approach, agricultural robotics could benefit farmers across the UK and worldwide. Read our robotics and automation article to understand more about how we can support you to develop a robust well tested solution through collaborative R&D today.

Spray UAV

Agricultural drones, also known as unmanned aerial vehicles (UAVs), are set to disrupt the agriculture industry owing to their immense potential to make agriculture more efficient, precise, and productive, driving the economic case for drone use.

With farmers grappling with mounting pressure to boost production while adapting to climate change and dealing with increasing costs of production and changing support frameworks, drones present a compelling solution to improve the efficiency of the entire farming enterprise.

Growers and their advisors can exploit the technology for data collection to identify stressed areas of crops, study and map farmland, and improve irrigation efficiency. In addition to spraying water, fertilisers or pesticides on crops, drones can be used for livestock monitoring and tracking animal population and health.

Precision farming is all about making the right decisions at the right times, in the right quantity and right locations, and that is where spray UAV’s come into play.

UAV System (DJI AGRAS T10):

  • Automatically fly to a task route and avoid obstacles that have been marked in field planning
  • D-RTK can be used for centimeter-level positioning
  • Clear views of the front and rear of the aircraft thanks to the dual FPV cameras
  • UAV equipped with the Spherical Perception Radar System, providing functions such as terrain following, obstacle sensing, and obstacle circumventing.

Spraying System:

  • An 8L spray tank, four nozzles, and a 2-channel electromagnetic flow meter that provides even and accurate spraying for saving liquid and reducing operating costs
  • Variable rate fertilization by importing prescription maps to the remote controller and applying them to fields
  • Spray width of up to 5 meters allow the aircraft to cover up to 15 acres/hour

The application potential of this drone includes farmland fertilisation and infestation/disease control of crops. We offer this UAV as a service to help researchers in UAV spraying to explore how it integrates with current agricultural systems, especially in the context of UK legislation in the area.

For information on renting out our technical assets please contact team@agri-epicentre.com

Hyperspectral UAV

Agri-EPI Centre has invested in the Hyperspectral UAV.

Compared to multispectral imagery, hyperspectral imagery measures energy in narrower and more numerous bands, thus giving much more information on target. Hyperspectral image data is 3D cube, where each pixel holds a full spectrum across the range. Since spectra are as unique as ‘fingerprints’ to target, hyperspectral imagery can unveil features that multispectral imagery may miss out on.

Hyperspectral imaging technology has been under research for decades and has been demonstrated to be very powerful in many application areas including agriculture. Especially in recent years, with a more robust and rugged imaging product embedded onto the UAV platform, agri-tech has seen revolutionary improvements.

The HySpex turnkey UAV solution with Mjolnir VS-620 and Lidar includes all the necessary hardware and software for flight planning, data collection, data processing and calibration. The system is provided with a UAV platform, 3-axis gimbal mount for the hyperspectral unit with Lidar and corresponding spectral calibration, radiometric calibration and geometric calibration. The geometric calibration includes a sensor model for VNIR and SWIR hyperspectral sensor heads, subpixel co-alignment of the 2 sensor heads, boresight calibration of the 2 sensor heads and internal IMU system, boresight calibration of the Lidar unit and internal IMU system.

There’s a broad application potential, including assisting in the development of products in the following application areas:
• Drought/water/nutrient stress monitoring
• Plant pathogens detection
• Analysis of soil properties/Determination of soil types
• Land mapping
• Yield forecasting
• Land management

UAV System (XQ-1400S BFD HySpex Edition):
1. <25 kg MTOW with Mjolnir and gimbal
2. Up to 25 min flight endurance with 8 kg payload
3. Fitted with high performance GNSS/GPS and IMU to enable data to be captured to high geolocation accuracy
4. Fitted with advanced 3-axis digital gimbal to compensate for the pitching

Sensing System (HySpex Mjolnir VS-620, Velodyne VLP-32C) :
1. Fully-integrated co-aligned hyperspectral visible and near-infrared (VNIR) and short-wave infrared (SWIR) (400 – 2500nm) and LiDAR sensors, along with in-flight data capture and storage system
2. Spectral coverage of 400 – 2500 nm, with spectral resolution of 3 nm in VNIR and 5.1 nm over SWIR range. Bit resolution 12bit in VNIR and 16 bit in SWIR.
3. Double resolution data in the VNIR range
4. High-resolution (0.33 degree) LiDAR sensor, with 360° surround view with real-time 3D data

They Hyperspectral UAV has potential use as groundtruth technology for other technologies/systems as well.

For information on renting out our technical assets please contact team@agri-epicentre.com

Multi-sensor VTOL UAV

Agri-tech has undergone tremendous improvements with the introduction of remote sensing technologies, making many agricultural properties that were difficult to achieve before now accessible.

Multi-Spectral imaging has been widely used on satellites (e.g. Landsat) for earth observation science at a global scale. In the agricultural domain, UAVs as a platform have played a major role utilising various payload sensors including multi-spectral imaging.

The advantage of multi-spectral imaging is that it extends human sight sensitivity beyond the visible spectrum. Some wavelengths that are widely recognised for applications, such as the normalised difference vegetative index (NDVI), can be deployed into multi-spectral imaging. Nonetheless, it has been proved to be very useful in many other fields, greatly empowering the advancement of agriculture. The adoption of UAVs has made it possible to achieve large-scale mapping and thus better agricultural management.

Agri-EPI Centre has invested in the Multi-spectral VTOL UAV which has a potential use as ground truth technology for other technologies and/or systems.

This UAV and sensing payload system can also be used for a variety of fruit orchard use-cases which include:
• Estimation of leaf area index
• Estimation of canopy volume
• Estimation of water stress
• Fruit biomass estimation
• Temperature variation across the orchard
• Temperature variation of specific plants over time
• Fruit count estimation

It can also be used in other agricultural areas which include:
• Pest infestation detection
• Quantity moisture levels
• Analyse wildlife damage
• Vegetation index creation like NDVI
• Crop counting
• Create 3D photogrammetry maps

For information on renting out our technical assets please contact team@agri-epicentre.com.

Tag Archive for: UAV

Nothing Found

Sorry, no posts matched your criteria